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Eli Lilly and Company, Sphinx Laboratories, P.O. Box 13951,
Research Triangle Park, North Carolina 27709, and Information Technology,

Lilly Research Laboratories, Indianapolis, Indiana 46285

ReceiVed April 29, 2002

It is now quite routine to acquire proton NMR spectra of compounds in 96-well plates prepared in a rapid
parallel synthesis fashion using a flow-NMR automation setup. However, the analysis of 96 NMR spectra
obtained in this manner is often laborious and painstakingly slow. We have developed a new, automated
method for rapidly analyzing 96 NMR spectra of compounds synthesized in an 8× 12 matrix using self-
organizing maps (SOM). This unsupervised neural network is capable of clustering together NMR spectra
containing a common pattern of-R groups and identifying outliers from within such clusters. Analysis of
these outlier spectra can quickly help indicate the presence of undesired products, impurities, starting materials,
and other unexpected errors in a 96-well plate synthesis by focusing the chemists’ attention on the aberrant
NMR spectra. Thus, SOM can be a valuable tool in performing efficient quality control on combinatorial
libraries.

Introduction

The evolution of combinatorial chemistry as a drug
discovery enabling technology over the past few years has
resulted in a tremendous increase in the need for high-
throughput analytical methods to keep pace with the number
of samples required to be analyzed. NMR spectroscopy is
now capable of performing high-throughput spectral data
acquisition on compounds in a combinatorial library. By use
of a flow-NMR setup such as VAST, it is possible to
routinely acquire NMR spectra on hundreds of samples a
day.1 Automated flow-NMR is particularly relevant in the
analysis of combinatorial plates because of the direct
sampling off a plate and subsequent near-complete recovery
of the sample into the original well. This flow-NMR
paradigm proves to be extremely convenient in conjunction
with other analytical techniques in the quality control (QC)
and analysis of combinatorial libraries.2

A major impediment to the use of high-throughput flow-
NMR in the analysis of combinatorial plates is the conun-
drum of data analysis. A typical high-throughput NMR run
of a rapid parallel synthesis (RPS) plate generates up to 96
separate proton NMR spectra of compounds synthesized from
an 8× 12 array of reagents. NMR spectra in the synthetic
chemistry environment have traditionally been interpreted
manually by considering the various parameters present in
the NMR spectrum including chemical shift, intensities, and
coupling constants. This detailed and manual process of
spectral analysis is clearly far too laborious when one is
looking to ensure the quality control of 96 compounds at
once, and possibly many multiples of 96, depending on the

number of plates being synthesized within the compound
library. Hence, methods that display all 96 spectra at once
provide a “bird’s eye” view of the combinatorial plate and
can be effective aids in this analysis.

The glued pseudo-2D maps described previously in this
journal1 are one such example wherein the spectra can be
glued back-to-back in any specified order according to row
or column, resulting in an interferogram that can then be
Fourier transformed to provide a pseudo-2D spectral repre-
sentation. Visually, such a display can point toward system-
atic problems with compounds across a row or column
because of the presence or absence of intrinsic NMR patterns.
However, the analysis of the resulting pseudo-2D map is
not automated, and it is up to the chemist to interpret the
glued map and to derive meaningful conclusions. Thus, the
granularity of the information derived is only as good as the
time and effort the chemist is willing to invest in analyzing
the map.

Commercial software packages are available that perform
automated spectral prediction and matching of the experi-
mental spectra as a means of quality assessment.3 The
reliability of such methods depends on the somewhat
questionable accuracy of proton spectral prediction. It has
been suggested that one could employ13C information
obtained from rapid inverse-detected{1H, 13C} correlation
experiments on each compound in conjunction with the
proton spectra to improve the reliability of QC using1H and
13C prediction matching.4 This would add a minimum of
about 5 min to the NMR experiment time per sample over
and above a standard eight-scan proton spectrum. On our
system, that translates into a plate run time of almost 24 h
at a minimum, up from about 4 h per 96-well plate for a
proton spectrum alone. While this approach may be theoreti-
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cally feasible, the extended time and effort for NMR analysis
may in fact reverse the efficiencies earned through rapid
parallel synthesis by performing lengthy analyses of each
compound without necessarily adding value to the overall
QC process. The evaluation as to whether such analyses may
be warranted in any particular situation must take into
consideration the final destination of samples from these
combinatorial chemistry libraries. In our case, that destination
is typically a “first-pass” high-throughput biological screen.

Efficiency in array combinatorial synthesis is gained by
using reagents in multiple wells, with common reagents being
added across rows and down columns of a 96-well plate.
The problem of analyzing NMR spectra from a plate of 96
compounds synthesized using RPS in an 8× 12 array of
reagents is essentially one of observing relationships in
patterns. One expects a “fingerprint” in the resulting NMR
spectra arising from-R groups added across a row and other
-R′ groups added down a column. Presence or absence of
these fingerprint patterns can be used as an aid to profile
compound quality in combinatorial plates. Such efforts have
been described in the context of other analytical techniques
such as MS and TLC and form the basis of the glued psuedo-
2D maps described above.5 We were interested in developing
an automated method that would be able to discern these
patterns from the 96 experimental spectra and then display
that data in an intuitive form that would be useful to a
chemist performing the QC.

We demonstrate here the development of a self-organizing
map (SOM)6 to perform this analysis of 96 NMR spectra in
a reliable, robust, and automated fashion. The SOM algorithm
is a nonlinear generalization of principal component analy-
sis,7 which can cluster together data that contain common
patterns. SOM has previously been used by one of the authors
to cluster genes with similar expression patterns over time
in a DNA microarray experiment.8 Elsewhere, SOM has
demonstrated the ability to cluster proton NMR spectra of
blood plasma samples according to clinically relevant lipid
classifications.9 In this instance, we are looking for the SOM
to discern common features in the 96 NMR spectra and to
identify those compounds (outliers) that do not fit the
expected patterns in the row or column to which they
physically belong. This focuses the chemists’ attention
primarily on the outlier NMR spectra while ensuring that
all other spectra fit some “parent” pattern. This could save
an enormous amount of time and labor in performing QC of
plates from RPS using proton NMR.

Self-organizing maps were originally developed to under-
stand how certain topographic features were formed in the
brain. As such, when the clustering is done, nearby clusters
are more similar to each other than clusters that are further
away on the topographic map. This map provides the scientist
with a two-dimensional graphical representation of the data,
making it easier to understand the overall character of the
data represented. Hence, SOM is a very useful tool to obtain
a “holistic” view of the data, which can be used to help
choose spectra that may require further investigation, instead
of performing detailed, laborious analysis of each spectrum.

In this paper, we describe several experimental conditions
that reflect typical problems encountered in the analysis of

NMR spectra of compounds resulting from RPS. The SOM
is used to help identify similarities and differences in the
NMR spectra from a 96-well plate. We demonstrate that
SOM_NMR is able to rapidly identify outliers among the
NMR spectra, thus lowering the barrier for performing such
studies, leading in turn to improved quality control of
compounds in combinatorial chemistry libraries.

Experimental Section

Two plates were used for this study, one each from
different combinatorial libraries previously synthesized.
Plates were first analyzed by LC-MS to ensure the expected
m/zmatch and an average sample purity of>90% using UV,
ELSD, and CLND detectors. LC-MS data were acquired
using an Agilent LC interfaced with a Waters ZQ MS
operating under MassLynx software control. All plates were
dissolved in 0.5 mL of CDCl3 at an average well concentra-
tion of 5 mg/mL for the purposes of high-throughput NMR.
NMR spectra were acquired on a 500 MHz Varian Unity
Inova spectrometer equipped with a flow-NMR automation
accessory (VAST), which involves a Gilson 215 liquid-
handler injecting samples sequentially into a 60µL NMR
flow-probe. Proton NMR spectra were acquired on each of
the 96 compounds in a plate, using an identical set of
standard eight-scan proton parameters and 16K data points
at 25°C.

SOM_NMR Experiments. We describe below three
different types of experiments that we performed on the SOM
to test its strengths and limitations.

(1) The first involves the direct analysis of a 96-well plate
(plate A) synthesized using an 8× 12 reagent matrix. This
test plate A depicted in Table 1 comprises 96 amides
synthesized from a reaction between a series of 12 acid
chlorides and 8 amines. This test plate was synthesized
specifically for the purposes of NMR testing and passed our
customary QC criteria using LC-MS and NMR.

(2) The second involves the digital production of NMR
data for a hypothetical, hybrid plate C of 96 NMR spectra
by combining spectra of distinct compounds from two
different plates A (above) and B. Plate B contains 96
spiroheterocyclic compounds synthesized by reacting 12
acrylates and 8 cyclic secondaryR-amino acids using a
procedure described previously.10 Spectra in plate A are
substituted postacquisition by all spectra from column 9 of
plate B, diagonally across wells A1 and B2 through H8 of
plate A to produce the test NMR data set for plate C. The
digital production of this hybrid test plate C is shown
schematically in Table 2. The individual NMR spectra of
the spiroheterocycles from plate B are quite dissimilar to
those of the amides in plate A, but the compounds are all
dissolved in the same NMR solvent, viz., CDCl3. The
peculiar pattern of the substitution to digitally “prepare” plate
C was specifically chosen to avoid possible bias in the
clustering arising from the row/column emphasis in the SOM
algorithm.

(3) The third involves the doping of wells A1 through H8
diagonally across plate A of amides above with an “impurity”
mixture comprising a 1:1:1 ratio of ethyl acetate (EtOAc),
2-propanol (iPr), and tetrahydrofuran (THF). In addition,
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wells H1 and H12 were also doped similarly to break any
possible degeneracy arising from a single doped spectrum
per row or column in our experiments. This doping mixture
was added in a 1:1 ratio to the original compounds (amides)
in these wells. This resulted in a new data set of 96 NMR
spectra of which 10 were selectively “doped” as described.
Table 3 shows a schematic representation of the doped test
plate used in experiment 3.

These test experiments were designed to gauge the ability
of the SOM to identify similarities and differences among
the spectra and to discriminate among NMR spectra of
markedly different compounds without any additional ex-
ternal input from the user. Experiments 2 and 3 above were
designed to serve as surrogates for the kinds of problems
that may typically arise during the automated processes used
in RPS.

NMR Data Handling. The resulting 96 NMR spectra
were glued according to procedures in the VNMR software

described previously.1 The spectra were then exported in 96
(X,Y-columnar) 2-column ASCII files. Each file had 16 384
data points, providing a digital resolution of 0.46 Hz for each
spectrum. These files were then low-pass-filtered using a
moving average of 40 points and subsampled with every 20th

Table 1. Layout of 12 Acid Chlorides and 8 Amines Added down Columns and Across Rows, Respectively, during the
Synthesis of Plate A of Amides Used in This Study

Table 2. Schematic Representation of Test Plate C Described in Experiment 2a

a Eight spectra from column 9 on plate B of spiro heterocycles were substituted diagonally across plate A of amides to produce hybrid
test plate C, as depicted by the shaded wells.

Table 3. Schematic Representation of Test Plate A of
Amides Doped 1:1 with an Equimolar “Impurity” Mixture
Described in Experiment 3a

a The 10 shaded wells in this plate contain the “impurity” mixture
in addition to the parent amide.
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point. The filtering and subsampling were performed so that
the peaks did not have to match exactly to be considered
the same by the SOM algorithm. This produces a data matrix
of 96 rows by 820 columns. This matrix file is submitted to
the SOM program running on a LINUX server (1 GHz, 256
MB of RAM) on our intranet and is accessible through a
web interface.

SOM Experiment. The SOM was programmed in-house
using C, Java, and Perl. The NMR spectra were normalized
using a unit hypersphere so that the comparisons were made
on the basis of shape, i.e., relative peak heights within the
spectrum, rather than on the magnitude of the peaks across
all the spectra. This makes the SOM impervious to variations
in peak intensity among spectra. The SOM was run for 100
epochs using a time-varying learning rate11 and a time-
varying Gaussian neighborhood function.12 The time-varying
neighborhood function starts out very wide, setting the
overall landscape, and then becomes more focused, resulting
in refinement of the clusters. For any given cluster, the SOM
converges to the average of the spectra in the cluster and
this “average” spectrum is graphically displayed (e.g., see
Figure 1a). Empty clusters, containing no spectra, are
represented by the average of the neighboring clusters,
preserving the topology of the map. To simplify the visual
appearance of the SOM, empty clusters are blanked out in
the final display.

When the SOM is run, it is necessary to specify a priori
the dimensions of the map that are to be produced. Choosing
too many will simply order the spectra in two dimensions
and may obviate the need for clustering, while choosing too
few will introduce far too much variance within the clusters
and make interpretation of the SOM potentially meaningless.
For this work, SOMs were generated using matrixes of
varying sizes such as 4× 4 and 5× 5, and after a number
of runs, it seemed that the 5× 5 matrices best represented
our NMR data. This choice is also appropriate given that
the number of reagents that gives rise to the source patterns
in the spectra is 8+ 12, i.e., 20. The 25-cluster matrix thus
provides the optimal size for RPS data and is not frequently
altered. The default choice of matrix size for our SOM
analysis is 5× 5, while matrixes of other sizes can be chosen
as options from a drop-down list if desired. However, if the
RPS plate is designed to synthesize just 24 compounds in a
4 × 6 array, one could use a smaller matrix size such as 4
× 4 for the SOM. It is also possible to increase the
dimensionality of SOM to 3D or higher and potentially gain
some additional modeling power. However, the intuitive 2D
map is lost as is the ability to print the results on paper.

The SOM updates the weight matrix in a global fashion
instead of a local fashion (as in hierarchical clustering
methods), making it more impervious to noise in the data.
However, the SOM can be sensitive to the initial conditions
of the weights, which are initialized with random numbers,
if the clusters are not well defined. To test the validity of
this method, SOMs were run many times with different
random number seeds. In all cases, the results were either
identical or qualitatively similar, with outlier spectra still
being highlighted.

Row and Column Emphasis of the SOM.For com-
pounds synthesized in a combinatorial RPS array, one
encounters the presence of two intrinsic patterns in the NMR
spectra, one along the rows of the plate and the other along
the columns, arising from the rowwise and columnwise
addition of reagents. When the SOM was initially run using
the NMR data as specified so far, it would find the most
prevalent patterns, be they from an entire row, column, or
some partial grouping of row and column, depending on the
number of clusters available. Such “global” pattern analysis
may be quite revealing in some circumstances. However,
this scrambling of all NMR spectra from all rows and
columns into several clusters by the SOM algorithm could
also lead to unnecessary conflict between the two intrinsic
patterns and may cause confusion during the interpretation
of the resulting SOM. Hence, we chose to force the clustering
to emphasize the rows of the plate preferentially at the
expense of the columns and vice versa. This would help
identify outlier spectra within a row or column more directly,
since there would now be only one intrinsic parent pattern
(row or column) from which SOM must detect a departure.
To emphasize such row or column clustering, additional 20
columns of data were generated (for a total of 840 columns
of data), representing the 8 rows and 12 columns found in
the combinatorial plate. For example, if row emphasis is
desired, the maximumY value for any of the spectra from
that row is placed into an additional data column for all
spectra from that row in the plate. The SOM treats these
additional columns of data like it would any of the NMR
spectra, i.e., the more closely the data columns match, the
more likely they are to cluster together. A multiplier may
be applied to adjust the weighting factor of the extra data
columns in a SOM run, which adjusts the level of row or
column emphasis desired. In our experience, it is advisable
to run both row- and column-emphasized SOM using
multiplier values of 1, 1.5, and 2 to determine the degree of
emphasis that provides the most graphically useful clustering
for any given “plate” of RPS spectra.

Results and Discussion

Figure 1a shows the row-emphasized SOM for plate A of
amides. The layout shows a 5× 5 matrix, resulting in a
total of 25 clusters. Each cluster is identified by a number,
which is the sum of its row and column coordinates on the
2D SOM. A floating tool-tip is displayed over each cluster
listing the NMR spectra belonging to that cluster. Clicking
on any one of these clusters leads to another web page that
displays all the NMR spectra that were classified by the SOM
as belonging to that cluster. Clusters that are blanked out in
the display contain no spectra. Singleton clusters are those
that contain exactly one NMR spectrum and are always
colored in the darker shade of blue on the SOM. Clusters
that are colored in lighter blue denote clusters with the
highest variance.

It is instructive to note that most of the NMR spectra of
the 96 compounds cluster neatly according to the rows they
physically belong to on the plate. This is in fact expected,
first, because of the presence of “fingerprint” patterns in the
NMR spectra of these compounds arising from the specific
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Figure 1. (a) Row-emphasized SOM from experiment 1 for plate A of amides. Clusters are numbered according to the sum of their row and column coordinates on the SOM. Blanked clusters
contain no spectra. Note the positioning of spectrum E8 in the singleton (cluster 18) adjacent to the cluster containing the remaining spectra from row E (cluster 23). E8 is the only compound in
row E synthesized using a nonaromatic acid chloride, and the SOM detects that difference in the NMR shift pattern from among the similarities it shareswith other spectra from row E. (b)
Column-emphasized SOM from experiment 1 for plate A of amides. Note the adjacent positioning on the map of clusters 1 and 6 containing the spectra of compounds from plate columns 5 and
12, respectively, which are synthesized using structurally similar acid chlorides.
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-R groups added across each row and, second, because of
our procedure of row emphasis described above. Also
noteworthy is the fact that the majority of these spectral
clusters have no neighbors, i.e., spectra in clusters im-
mediately adjacent in any direction on the SOM. Neighboring
clusters, when they do exist, typically contain spectra of
compounds from the “parent” next-neighbor row, since those
spectra closely resemble a “parent” pattern of NMR peaks.
This can be observed in Figure 1a where clusters 8, 12, 14,
and 18 contain respectively 4, 3, 3, and 1 spectra from their
next-neighbor parent rows A, H, F, and E. This is testimony
to the ability of the SOM to detect similar patterns in the
NMR spectra without any external training.

Using the SOM in Figure 1a during a typical combinatorial
plate analysis, a chemist would probe further into the outlier
spectra, since the SOM appears to detect in them some
departure from a “parent” pattern, which may signal a “flag”
in terms of QC. One such outlier of note in this SOM is the
NMR spectrum from well E8, which appears as a singleton
in cluster 18. It is positioned on the SOM directly above
cluster 23 containing all other NMR spectra from row E, as
expected. The SOM is able to detect a common feature in
the NMR spectra from row E and cluster them together, while
at the same time being able to detect something different in
the spectrum from well E8. As one can observe in Table 1,
column 8 carries the only acid chloride of the 12 that contains

a cyclic aliphatic group (-pyrrolidine), thus contributing to
a unique pattern of NMR chemical shifts for the resulting
amide in well E8. This increased our confidence in the ability
of the SOM to discern the presence or absence of patterns
in the NMR.

Figure 1b shows the column-emphasized SOM of experi-
ment 1 on plate A. As in the previous row-emphasized case,
the spectra from each column of the plate mostly cluster
together except for those indicated in clusters 16 and 17
(wells A4, B4 and A7, B7). In this instance, a chemist
performing QC could choose to investigate only these two
clusters (four spectra) more closely and perhaps rapidly
browse some others. The SOM indicates merely that it detects
something different in these two clusters, which does not
necessarily imply a QC problem with these wells. It simply
indicates a departure from an expected “parent” pattern of
NMR chemical shifts, prodding the chemist to analyze these
some more. While this column-emphasized map appears
visually different from the row-emphasized one in Figure
1a (12 vs 8 parent patterns), the principles guiding its
interpretation and use are very similar.

Figure 1b shows all eight compounds from column 5 of
the plate clustered together in cluster 1, while cluster 6
contains all compounds from column 12. The SOM is clearly
able to discern that the amides resulting from the acid
chlorides added down columns 5 and 12 have similar NMR

Figure 2. Row-emphasized SOM from experiment 2 for test plate C of amides substituted diagonally by eight spectra of spiro heterocycles
from plate B. Note the positioning of all eight substituted spectra from wells A1 through H8 at the center of the SOM but yet adjacent to
their parent wells.
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spectral features because of their structural similarity (phen-
oxyacetyl chloride and itsp-chloro derivative, respectively).
Also notice that clusters 4 and 5 contain all eight spectra
from columns 6 and 2, respectively, which are also synthe-
sized from structurally similar acid chlorides (phenylacetyl
chloride and 3-phenylpropanoyl chloride). This illustrates that
the SOM recognizes similarities among the spectra of these
compounds and clusters them in proximity to each other on
the map. One thus obtains a visual image of the 96 NMR
spectra in just two (row- and column-emphasized) self-
organizing maps, which can then be readily explored further,
if necessary. At this point, we decided to further explore the
ability of the SOM to cluster NMR spectra by testing it with
experiments 2 and 3 described earlier.

Figure 2 shows the SOM for the data set described in
experiment 2 above. This map graphically depicts the power
of the SOM to cluster similar spectra together. Four of the
eight “substitute” spectra are clustered together at the center
in cluster 13, with the remaining four occupying adjacent
clusters. This is due to the spectral similarities among these
eight substituted spectra juxtaposed against the “artificial”
row-emphasis criteria that have been enforced. Hence, the
SOM is capable of discriminating between the NMR spectra
of unrelated compound classes, the amides, and the spiro
heterocycles. This ability of the SOM could be very useful
in identifying those wells in a plate in which the intended
product was not synthesized for any reason.

Figure 3 depicts the SOM for experiment 3 above where
a mixture of solvents intended to serve as an “impurity

surrogate” is added to the wells in a 1:1 ratio to the parent
amide compounds in plate A across the diagonal A1 through
H8 and in wells H1 and H12. Cluster 1 on this map clearly
shows that the SOM was able to cluster all these 10 spectra
together, since they contain a common “impurity” even
though each of these 10 spectra do bear a similarity with
spectra from their parent row/column. Of particular note is
the fact that cluster 1 is the only cluster on this SOM that
has no neighbors, implying that its spectra bear little
resemblance to other spectra on the plate relative to each
other. This experiment demonstrates that SOM can be a
powerful tool in identifying “problem wells” on a plate.

Experiment 3 was conducted at decreasing ratios of the
impurity mixture to the parent amides such as 5:1 down to
1:1, and the SOM performed similarly in each of those cases.
However, as the ratio was decreased further below 1:1, the
SOM was unable to consistently cluster these 10 spectra
containing impurities as outliers. For example, at an impurity
ratio of 0.8:1, with no row or column emphasis, there were
five singleton clusters, two of which were impurity wells.
With a column emphasis of 1, one cluster had four of nine
members from the impurity set. The patterns of the R-
groups in the NMR spectra simply become stronger than the
patterns of the impurities at the lower concentrations.
However, even this may be enough information to signify
to the chemist that something is amiss in those wells.
Experiments are in progress to extend this SOM methodology
to situations in which one may have no more than just a
few wells with trace levels of impurities.

Figure 3. SOM from experiment 3 for test plate A of amides doped diagonally by an “impurity” mixture as shown in Table 3. Notice the
clustering together of all 10 doped spectra from wells A1 through H8, H1, and H12 in cluster 1.
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Conclusions

The results discussed above indicate that SOM is capable
of (a) clustering NMR spectra from 96-well combinatorial
plates according to the similarities present in the spectra
across rows and down columns of a plate, (b) positioning
these clusters on a graphical 2D representation such that
proximity on the map denotes structural similarity, and (c)
identifying “outlier” spectra from among rows or columns
that do not fit a “parent” pattern characteristic of that row
or column on the plate.

These features of SOM are extremely helpful to a chemist
to quickly identify “problem wells” in a plate. The laborious
process of analyzing 96 NMR spectra sequentially and
manually can thus be reduced to analyzing only the outlier
spectra from two self-organizing maps (row- and column-
emphasized) and to ensuring that all other spectra cluster
neatly along their parent rows and columns. SOM requires
no additional input beyond the NMR spectra from the
combinatorial plate, making it far more efficient than other
“automated” methods of analyzing such NMR data, which
often require the creation of extensive databases of reagent
spectra or prior iterative training of artificial neural networks.
Each SOM_NMR run (row- and column-emphasized) on a
96-well combinatorial plate takes less than 60 s run time on
our LINUX server. SOM_NMR is thus a very efficient tool
to obtain a QC profile of a combinatorial plate from the
proton NMR spectra.

It is clear from the results shown in Figures 2 and 3 that
if a similar “chemical problem” occurs down a column or
across a row during plate synthesis, the SOM might cluster
all those spectra together. In the event of an excessive number
of dissimilar deviations from the expected row/column
patterns across a plate, we recommend expanding the 5× 5
layout of the SOM map to accommodate the several outlier
spectra, resulting in a more graphically intuitive SOM. It is
important to use SOM_NMR as a guide and also to browse
the consistent clusters for lurking signs of “problem” wells,
which is best accomplished in conjunction with other
analytical data. SOM may identify certain spectra as outliers
within a given set for any number of reasons, and hence, it
should be used as an aid to QC by delving deeper into the
outlier spectra to identify the problems. It is important not
to overinterpret the SOM result.

Most significantly, the use of SOM to analyze such large
sets of NMR data may lower the barrier to actually acquiring
such NMR data on large combinatorial libraries, thus
ensuring improved quality in the compounds submitted for
high-throughput screening. Clearly, the use of SOM in the
context of combinatorial chemistry and high-throughput
screening need not be limited to the analysis of NMR spectra
but should be explored with other types of complex analytical
and screening data as well.
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